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Abstract—A Machine Learning based Controller (MLC) is
developed for a Modified Double Inverted Pendulum on a Cart.
First, the governing differential equations of the system using
the Lagrangian method have been derived. Then, a dataset for
training and testing the machine learning-based models of the
plant is generated. Next, different types of machine learning
models such as artificial neural networks (ANN), deep neural net-
works (DNN), long-short-term memory neural networks (LSTM),
gated recurrent unit neural networks (GRU), and recurrent
neural networks (RNN) are used to capture the dynamics of
the system. DNN and LSTM are selected, because of their
superior performance compared to the other models. Finally,
different variations of the Model Predictive Controller (MPC)
have been designed and their performance is evaluated in terms of
running time, and tracking error. The advantage of the proposed
control methods in comparison with the conventional nonlinear
and linear model predictive control method is demonstrated in
simulation.

Index Terms—Double Inverted Pendulum, Nonlinear Model
Predictive Control, Deep Neural Network.

I. INTRODUCTION

An inverted pendulum is a standard platform for control
engineers to test new control techniques since it is nonlinear,
unstable, complex, and under-actuated. It can be used to
represent a wide range of applications such as rockets, cranes,
and robots. Different configurations of the inverted pendulum
are found in the literature such as a rotational single-arm
pendulum [1], a cart inverted pendulum [2], a double inverted
pendulum [3], a double link rotatory inverted pendulum [4],
and a triple inverted pendulum [5]. Control of a Modified
Double Inverted Pendulum on a Cart(MDIPC) is considered
in this paper. MDIPC control consists of these operating
models: (1) Pendulum swing up and stabilization at an unstable
position. (2) Moving the cart to a desired position while
stabilizing the pendulum. (3) Tracking control of pendulums’
angle and the cart position.

Neural Networks (NNs) for modeling and controlling com-
plex systems [6] and Fuzzy Logic Controllers (FLCs) which
are intelligent human-like control used to control a double

inverted pendulum on a cart (DIPC) in [7]–[9]. One advantage
of FLCs is that they are quite simple and when compared
to a Linear Quadratic Regulator (LQR) the FLC performed
better under a variety of initial conditions with reduced peak
levels [7]. A robust adaptive fuzzy controller is designed to
balance pendulums in the upright position [8]. To improve the
performance of the controller the parameters which are asso-
ciated with the membership functions and rules are optimized
by using either Genetic Algorithm (GA) or NNs. However,
the traditional type 1 fuzzy logic system has been found to
have limitations in treating large uncertainty and unexpected
disturbances [9]. Thus, a type 2 FLC to compensate for
these limitations show that the FLC has better stability and
uncertainty [9]. A PD-type Fuzzy Iterative Learning Control
(ILC) is designed for a single arm planner on a cart [10].
A linear and a nonlinear model are obtained and then based
on the fuzzy logic the parameters of PD-ILC are re-tuned.
A disadvantage of FLC is that the number of rules increases
exponentially with the increase of input variables [8].

Artificial Neural Network (ANN) is another method that is
used for a DIPC [6], [11]. Data that does not cover the full
range of motion is used in feedforward NN design [6], and
NN control performance is much worse than LQR. A Wavelet
Neural Network (WNN), which has the advantages of simple
structure and fast convergence, is designed and the weights of
the hidden layer are optimized by using an Improved Genetic
Algorithm (IGA) and has a good performance [11]. Although
FLC and NN have good performance, no guarantee of stability
is available. The DIPC model is linearized, and adaptive
state feedback is implemented [12]. The control gains are
adapted based on sliding mode surface relations and Particle
Swarm Optimization (PSO) [12]. Pole placement and LQR
methods are used [13]. The model is first linearized about the
pendulum’s upright position and state and control weighting
matrices of LQR are optimized by using GA and PSO in single
objective optimization. The upright of the two pendulum links
and commanding the cart to a new position is the objective. A



combination of PID and reinforcement learning is developed
when Q learning is combined with PID compensation to
improve the slow convergence rate of PID and guarantee
good tracking performance [14]. A two-cascade linear MPC
controller is designed for an inverted pendulum system when
the inner control loop, stabilizes the pendulum’s angle and
the outer loop adjusts the inner controller input to stabilize
the cart position [15]. The trajectory tracking problem for a
two-wheeled inverted pendulum vehicle is considered [16]. To
simplify the system and reduce the computation burden input-
output feedback linearization is carried out before designing
MPC. Control of the position of the cart and the angle of two
pendulum links using a combination of the MPC method and
Machine Learning algorithms (ML) is examined in this paper.

A Schematic of the MDIPC is shown in Fig.1. For accurate
reference tracking using MPC, an accurate model is needed.
The nonlinear properties of MDIPC mean that a linearized
model is too simplified for MDIPC. A nonlinear physics-
based model is used to represent the MDIPC. Thus, the model
will be used to generate data” for the subsequent data-driven
control method. A nonlinear ML-based model is developed
for the system based on the physical model and embedded in
the MPC. Reducing the computation cost and increasing the
accuracy of the controller in comparison with the conventional
nonlinear and linear MPC is the main goal of this study.
Simulations are compared with the case where the governing
nonlinear and linear equations of the system are used as the
prediction model for the MPC.

The remainder of this paper is organized in sections. In
Section II, a physical model of MDIPC is derived. In Section
III, the physical model is used to generate data which is then
used for modeling. Data-driven models developed from the
generated data are described in Section IV. Finally, in Section
V, MPC is designed for the models, while the concluding
remarks are given in Section VI.

II. MDIPC PHYSICAL MODEL WITH MOTION IN PLANE

A Modified Double Inverted Pendulum on a Cart (MDIPC)
system has a cart and two links which are shown in Fig.1.
The control inputs are a horizontal force to the cart and
two torques at the pendulums’ joints. Since the MDIPC is
unstable, this complicates generating rich data and for data-
driven modeling developing ML models is dependent on the
data, and persistently exciting data is needed to identify the
system. To simplify the system and allow suitable data, the
DIPC system is modified by adding two torsional springs at
each of the joints and a linear spring that connects the cart to a
wall; with two joint torques, the system is stable, so abundant
data can be generated for the training of ML models. The
angle of the lower (θ1) and upper pendulum (θ2), and the
cart’s position (θ0) are considered as the system’s outputs
and are shown in Fig.1. The force that will be applied to
the cart (u) and the torque which will be applied to lower
(tl) and upper (tu) joints are the inputs of the system. The
governing differential equations of the system are derived

Fig. 1: Modified Double Inverted Pendulum on a Cart

using the Lagrange method by calculating the kinetic and
potential energy of the system. The Lagrange equations are:d

dt
(
∂L

∂θ̇
) − ∂L

∂θ
= q (1)

where θ = [θ0, θ1, θ2] which are described above. In the
Lagrangian L, q is defined as a vector of generalized forces
that acts in the direction of each component in θ. The control
force u(t) is the force on the cart, and tl and tu are the
torque of the lower and upper pendulum link, respectively.
The Lagrangian is defined based on kinetic energy (Ekin) and
potential energy (Epot).

L = Ekin − Epot (2)

The position of the center of the mass of the cart is x0 =
0, y0 = 0, and the position of the center of the mass for the
lower and upper pendulum links are.

x1 = θ0 + l1 sin (θ1) , y1 = l1 cos (θ1)

x2 = θ0 + L1 sin (θ1) + l2 sin (θ2)

y2 = L1 cos (θ1) + l2 cos (θ2)

l1 = L1/2, l2 = L2/2

(3)

The kinetic energy and potential energy of the cart are:
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For the lower pendulum, the results are:
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For the upper pendulum, the kinetic and potential energy is:
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D(θ)θ̈ + C(θ, θ̇) θ̇ +G(θ) = HU

D(θ) =

 m0 +m1 +m2 (m1l1 +m2L1) cos(θ1) m2l2 cos(θ2)
(m1l1 +m2L1) cos(θ1) m1l

2
1 +m2L

2
1 + l1 m2L1l2 cos(θ1 − θ2)

m2l2 cos(θ2) m2L1l2 cos (θ1 − θ2) m2l
2
2 + l2

 , H =

1 0 0
0 1 0
0 0 1

 , U =

u
tl
tu


C(θ, θ̇) =

0 −(m1l1 +m2L1) sin(θ1)θ̇1 −m2l2 sin(θ2)θ̇2
0 0 m2L1l2 sin(θ1 − θ2)θ̇2
0 −m2L1l2 sin (θ1 − θ2)θ̇1 0

 , G(θ) =

 −k0θ0
−(m1l1 +m2L1)g sin θ1 − k1θ1

−m2gl2 sin θ2 − k2θ2


(7)

The kinetic and potential energies of the components and
Lagrange method the governing differential equations are:

The parameters of the system are listed in Table I. In order
to obtain the linear model, the governing equations of motion
for the system are numerically linearized about θ = [0, 0, 0]
to form the state space model by calculating the Jacobian of
the equations which results in:

A =


0 1 0 0 0 0

−6.5 0 −3 0 1.6 0
0 0 0 1 0 0

−16.9 0 −25.8 0 47.4 0
0 0 0 0 0 1
3.7 0 19.9 0 −78 0

 , D =

0
0
0



B =


0 0 0
4.4 11.2 −2.5
0 0 0

11.2 97.5 −75
0 0 0

−2.5 −75 123.3

 , C =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0


(8)

TABLE I: Nominal values of MDIPC

Parameters Description Value
m0(kg) Mass of the cart 1.5
m1(kg) Mass of the lower pendulum 0.5
m2(kg) Mass of the upper pendulum 0.75
L1(m) Length of the lower pendulum 0.5
L2(m) Length of the upper pendulum 0.75
l1(m) Center of mass for lower pendulum 0.25
l2(m) Center of mass for upper pendulum 0.375

g(m/s2) The gravitational acceleration 9.81
k1(N/m) Spring constant of cart 1

k2(Nm/rad) Spring constant of lower pendulum 1
k3(Nm/rad) Spring constant of upper pendulum 1.5

III. BLACK BOX MODEL

To identify a system using input-output data, the models
of interest must be excited. Here, the proposed model of the
MDIPC is used as the unknown plant. A Pseudo Random
Binary Sequence (PRBS), amplitude 0.0125 (N.m) for torques,
0.0125 (N) for the force, with a sample time of 0.05 seconds,
is used as the input to the plant model. The generated input
for the force to the cart is plotted in Fig.2 where 13 seconds
simulation is shown. The resulting outputs are depicted in
Fig.3.
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Fig. 2: MDIPC Input: Force for 13 seconds with PRBS input
for model identification

IV. DATA DRIVEN MODEL DEVELOPMENT

Based on the generated data, feed-forward and recurrent NN
has been developed. The inputs of the model are the inputs
of the system, including force and torques that are applied
to MDIPC. This model will then be embedded in MPC since
MPC performance depends on the quality of the model [17].
The model accuracy strongly influences the MPC performance.
For training, validation, and testing 75%, 10%, and 15% of the
data are used. ANN and DNN have been developed for feed-
forward networks and Recurrent NNs (RNN), Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU) has
been used for recurrent NN. To choose the hyper-parameters
of the model, optimization is done to search systematically by
using ‘Ax’ which uses the Sabol method to generate samples
from a search space. The NN parameters that are chosen to
be optimized are learning rate, dropout probability, number
of hidden layers, type of activation function, and optimization
method. The results are summerized in Table II.

DNN and LSTM have the best performance as seen in Table
II where they have the smallest Mean Squared Error (MSE)
and Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and correlation coefficient (R2) and they estimate
the system accurately. The DNN consists of 5 layers that each
of which has 9 neurons with RELU activation function with a
linear output layer’s activation function. The LSTM consists
of one hidden layer with 10 neurons with a tanh activation

TABLE II: Nominal values of MDIPC

Model DNN LSTM RNN GRU
MSE 0.00 0.00 0.02 0.02
MAE 0.01 0.02 0.15 0.10

R2 0.98 0.98 0.57 0.56
RMSE 0.01 0.03 0.12 0.13

RunTime(s) 89 108 208 284
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Fig. 3: Output of the system for the generated input (Fig.2)

function, and the output layer is a dense layer with 3 neurons
and a linear activation function. The test results for DNN are
plotted in Fig.4 and Fig.5 for LSTM. For visual clarity in the
plots, only a limited data range is depicted. As predictions
in Fig.4 and Fig.5 show the results are accurate, and the
developed models are acceptable.

V. MODEL PREDICTIVE CONTROL DESIGN

Now MPC is designed with the embedded based on one of
DNN, LSTM, linear Eq (8), and nonlinear equations Eq (7).
The block diagram of the plant and controllers is shown in
Fig 6.

The performance of the ML-MPC controller is compared
with the standard linear and nonlinear MPC. For nonlinear
MPC, the ‘NMPC’ toolbox in MATLAB is used. The run times
are on a desktop PC with a 12th Gen Intel(R) Core(TM) i7-
12700K 3.60 GHz processor with 32.0 GB RAM. The NMPC
cost function for obtaining the control law is a quadratic cost
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Fig. 4: Comparing Real (red line) and Prediction (blue line)
by using DNN
function;

J(Np, Nu) =

Np∑
j=1

δ(j)[ŷ(t+ j|t)− w(t+ j)]2+

Nu∑
j=1

(λ(j)[∆u(t+ j − 1)]2 + µ(j)[u(t+ j − 1)]2 + ρ(j)ϵ2)

(9)

where Np is the prediction horizon, and Nu is the control
horizon. The the general aim is that the future outputs on
the considered horizon should follow a determined reference
signal at the same time. Furthermore, the control rate ∆u and
control action can be considered in the cost function to reduce
the jerk and the energy consumption, respectively. Also, the
last term in the cost function is for the soft constraint.

The MDIPC has both hard physical constraints and soft
constraints, which are constraints in the optimization. The hard
constraints of this model consist of the position constraints or
the cart position, and angle [θ0, θ1, θ2] as well as the input
force and torques applied U = [u, tl, tu]. The position of the
cart θ0 is bounded by the length of the track available here
as ±1. The angular positions (θ1; θ2) are bounded between
±180◦ from the equilibrium position so that the system is
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Fig. 5: Comparing Real (red line) and Estimation (blue line)
by using LSTM

Fig. 6: Block diagram of ML and MPC

defined to not pass a full rotation. The manipulated variables
[u, tl, tu], are constrained based on the physical devices and
limited to ±0.0125N or ±0.0125N.m. Soft constraints on
manipulated variables are introduced later in MPC design to
further improve the performance of the controlled system. The
parameters of the designed NMPC are listed in Table III. The
results of ML-MPC, the linear and nonlinear MPC are plotted
in Fig.7. For the linear MPC, the linear model of Eq(8) is
used, and for the nonlinear MPC, the nonlinear model of Eq(3)
is used. The results are then compared with ML-MPC with
DNN and LSTM as the ML model. To demonstrate that the
controller does not violate the constraint, they are plotted with
a gray dashed line in Fig.7.

The linear MPC simulation has the worst performance
and does not track the reference, and the control input is
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Fig. 7: The outputs of the system for NMPC- DNN (blue
line), LSTM (red line), ref (yellow line), and Linear (green
dash line) with constraint (purple dash line)

continuously switching, resulting in poor tracking. The ML-
MPC with DNN and LSTM have good tracking performance
without violating the constraints. Comparing the results of
ML-MPC with the nonlinear MPC shows that ML-MPC has
better tracking performance and lower computation time. The
control performance is summarized in Table IV. The DNN-
MPC requires an order of magnitude less computation time
than that of the ML-MPC combined with lower MSE and
MAE.

VI. CONCLUSION

Nonlinear MPC where the embedded model is based on
machine learning is developed for Modified Double Inverted
Pendulum on a Cart. A physical model of the system is
obtained and linearized. Then, the nonlinear model is used
with PRBS inputs to develop a machine-learning model of
the system to predict. DNN and LSTM ML models were
developed, and the results show that ML-MPC has a better
performance compared with the MPC physical models (linear,
nonlinear). The simulation results demonstrated that the DNN-
based nonlinear MPC offers the best performance among all



TABLE III: Parameters of designed MPC

Parameter Linear-MPC DNN-NMPC LSTM-NMPC Nonlinear-MPC
W-Output(δ(j)) [10,10,10] [13,14,15] [1000, 1500,1000] [100 100 100]

W-ContVariable(µ(j)) [0.1,0.1,0.1] [100,100,100] [10,10,10] [1 1 1]
W-ContVariableRate(λ(j)) Not considered [1,1,1] [0.1,0.1,0.1] [0.1,0.1,0.1]

W-SoftConstraintρ(j) 0.001 0.001 0.001 0.001
ContHorizon(Nu) 5 10 10 10
PredHorizon(N2) 1 1 2 1

TABLE IV: Comparing Linear, DNN & LSTMC results

Metric Output Linear-MPC DNN-NMPC LSTM-NMPC NonLinear-MPC

MSE
θ0 0.37 0.0083 0.0438 0.1292
θ1 0.38 0.0076 3.4e-4 0.0177
θ2 0.37 0.0268 0.0031 0.0086

MAE
θ0 0.50 0.0635 0.0025 0.0995
θ1 0.50 0.0668 0.0175 0.0342
θ2 0.50 0.0521 0.0506 0.0285

RunTime(s) 1.18 15.21 194.35 162.00

tested versions of MPC in terms of tracking and computational
cost.
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